Steady Growth, Satisfied Customers
Waters And Sons Takes Care Of Business Page 6

Protecting Our Waters
Replacing A Bridge Without Making Dangerous Waves Page 11
Dealing With The Vibration And Noise Of Pile Driving

by W. Allen Marr, P.E.

Pile driving produces vibrations and noise that might extend thousands of feet away from the driving activity, and people have become increasingly intolerant of these effects. They complain to government agencies and courts that use pile elements, and their opposition is beginning to seriously affect the pile driving industry in the developed countries.

Governmental agencies and owners are choosing alternatives to pile driving to avoid the vibrations and noise. This is an unfortunate and uninforme reaction for these reasons: the alternatives might be considerably more expensive than driving piles; the alternatives might produce comparable levels of noise and vibrations; and the perceptions of people about the possible damage from vibrations and noise are generally wrong. This paper addresses the third issue.

The pile driving hammer produces vibrations and noise with each blow delivered to the pile. The vibrations of consequence are caused by waves of energy traveling away from the pile. Each blow to the pile transfers energy from the pile to the surrounding soil. As much as 70 percent of the energy transferred to the soil by pile driving travels away from the pile in the form of surface waves (Woods, 1997). The particle velocity of the ground surface caused by these traveling waves of energy decreases with distance from the source due to geometric effects, much like the height of a ripple created by dropping a stone into a pond decreases with distance away from the drop point.

The oscillating ground can induce stresses that can damage a structure. Plastic and weak mortar are among the first elements to experience damage. The repeated stressing from the hundreds of blows necessary to drive a single pile potentially exacerbates damage due to fatigue effects.

Figure 1 shows a typical plot of the levels of particle velocity required to produce structural damage at a frequency of 10 Hz. Also shown are the measured peak vibration levels from various construction activities as a function of distance away from the vibration source. The measured data show how the particle velocity decreases rapidly with distance from the source.

Figure 1 shows that if one is more than 15 feet away from the vibration source for typical pile driving, the vibration level is below that which might damage a structure. The available data and experience show that unless pile driving is occurring within a few feet of a structure, it does not cause damage to the structure from vibrations. (There may be other undesirable effects, such as vibration induced ground settlement or disruptions to very sensitive equipment, but these are special cases.)

The contents of Figure 1 are well known to the geotechnical engineering profession and many pile driving contractors.

So why do people complain about pile driving and resist its use? Figure 1 holds a significant part of the answer. It also shows criteria on the sensitivity of people to vibrations. People can typically perceive vibrations above 0.01 in/sec—one-hundredth the level at which structural damage might occur. Vibrations above 0.1 in/sec can become troublesome to people. They can feel and become concerned about vibrations that are only 1/100th of those that might begin to cause damage.
Vibration (Continued From Page 17)

Figure 2: Sound levels

<table>
<thead>
<tr>
<th>Sound Pressure Level, dB(A)</th>
<th>Distance from Source, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>1</td>
</tr>
<tr>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>80</td>
<td>1000</td>
</tr>
</tbody>
</table>

- **Threshold of Pain = 140 dB**
- **OSHA 8-hr exposure limit**
- **Majority Severely Annoyed**
- **Majority Moderately Annoyed**
- **Majority Slightly Annoyed**
- **Air compressor**
- **Pile Driver**
- **Concrete Worker**
- **Rock drill**
- **Nearest Neighbor**

Grief. When people look for evidence to confirm their suspicions, they will usually find something. Politicians don’t like receiving complaints. Lawyers love opportunity. Noise may be the most serious threat to the pile driving industry today — not because it is causing damage but because it creates a perceived problem to those impacted.

Vibration and noise from pile driving have some common elements. The intensity of both decreases with the log of distance away from the source. Both are unlikely to cause structural damage as long as the structure is several feet from the driving activity. For both, the real problem is the annoyance to people caused by the vibrations and the noise and not physical damage.

In today’s urban world, people demand a secure environment, free from annoyance. Contractors must develop ways to manage the vibration and noise problems produced by pile driving. The following approaches are recommended for every project that involves pile driving:

- **Education** — People who might be impacted by pile driving need to be informed in advance of the planned activities and what the impact to them might be.

(Continued On Page 20)
people are less likely to suspect that the vibrations and noise are causing physical harm to themselves or their property. People potentially impacted should be provided with educational materials on the project schedule, the nature of the work, the importance of the work to the community and the potential impacts of the work on them.

People potentially impacted should be provided with educational materials on the project schedule, the nature of the work, the importance of the work to the community and the potential impacts of the work on them. A special effort should be made to assure them that feeling vibrations and hearing noise does not equate to physical harm or damage. Be considerate and respectful of their expected right to a peaceful environment.

- **Abatement** - Take steps to reduce vibration and noise levels to the extent that they are economically possible. Limit the time of driving to daylight hours when people are less affected by these nuisances. Try to reduce the time required for pile driving. Use noise shrouds or curtains to reduce noise levels by 15 to 30 dB(A). Figure 2 shows that a 30 dB(A) reduction to the noisiest hammer can limit the area within which most people are moderately annoyed to within 500 feet of the work.

- **Monitoring** - Measure the vibration and noise levels at key locations. Use the measured data with the information in this paper to demonstrate that your work is well below the levels that one else complains.

- **Involvement** - Keep the affected parties engaged in the project and informed of progress. Use community representatives, community meetings, newsletters or a project web page to keep people informed of the work progress. Use the measurements from your monitoring program to show how well you are keeping vibrations and noise at safe levels.

- **Proactive** - Stay proactive to manage vibrations and noise and minimize misinformation. After all, vibrations and noise from pile driving are more perceived problems than they are reality. But as the modern world acts, perception is reality, so you have to work to manage the perception.

We have been working on some technology to help contractors carry out these approaches. It involves the use of vibration and sound monitoring equipment connected to the Internet. We provide special seismographs to a contractor, who places them at sensitive locations. The seismographs are coupled to the Internet by a cell phone. The system is programmed to call our server whenever a preset threshold of vibration or sound is recorded. Our server downloads the specific data from the seismograph and places it onto a web site. Our server might also send an e-mail or a coded message by phone or pager to contractors to alert them that threshold levels for vibration or noise are being exceeded. All of this happens automatically, within a few minutes.

This technology helps educate the community on the real effects of pile driving, rather than perceived effects; gives the contractor measurements with which to establish and control abatement programs; provides a database of real facts to counter inflated claims; keeps significant parties involved by giving them access to the real facts on the project through the web site; and provides a proactive way for contractors to work with the community by keeping its members informed. We look forward to using it to help contractors more effectively deal with vibrations and noise produced by pile driving.

References
